Матричная оптика

Audi оснастила A8 умными фарами

Авто

03.07.2013, Ср, 13:07, Мск , Текст: Сергей ЮртайкинAudi оснастила бизнес-седан A8 интеллектуальной оптической системой. Матричные светодиодные фары не будут ослеплять водителей встречных автомобилей, предупредят пешеходов о приближении машины, а также помогут приготовиться к повороту. Обновленный представительский седан Audi A8, который появится на рынке в конце 2013 г., получил матричные светодиодные фары головного света. Как поясняют в Audi Group (входит в концерн Volkswagen AG), технология Matrix LED подразумевает использование нескольких светодиодных ламп, соединенных последовательно с линзами и светоотражателями.

Работа световой системы контролируется электронным блоком: в зависимости от дорожной ситуации и времени суток он включает и выключает свет фар, а также корректирует его интенсивность, чтобы не слепить других водителей. Для этого используется встроенная камера, распознающая встречные автомобили.

Фара новой A8 будет состоять из 25 светоизлучающих диодов, разделенных на 5 групп, в каждой из которых установлен свой рефлектор с линзой. Интеллектуальная система начинает работать при выборе автоматического режима освещения и включении дальнего света на скоростях больше определенного порога.

Матричные LED-фары самостоятельно будут отключать необходимые диоды, чтобы едущий навстречу автомобиль оставался в тени, а остальные участки дороги в пределах видимости были освещенными (см. иллюстрацию ниже). Когда разъезд со встречным автотранспортом завершен, лампы вновь начинают работать на полную мощность. В светлое время суток оптика выступает в качестве дневных ходовых огней.

Матричные LED-фары самостоятельно отключают часть диодов, чтобы оставить едущий навстречу автомобиль в тени

Еще одной особенностью Matrix LED является опциональная функция ночного видения. С ее помощью камера распознает в темноте пешеходов и троекратно «моргает» им дальним светом, предупреждая о приближающемся автомобиле.

Помимо этого интеллектуальные фары Audi могут заранее подстраивать световой пучок для готовящегося поворота. О том, что прямая дорога заканчивается, система узнает благодаря навигационному комплексу MMI Navigation Plus. По сравнению с механическими оптическими системами помощи при маневрах матричное решение не требует установки поворотных механизмов.

Ранее фары на базе матрицы светодиодов в 2012 г. показала компания Opel (входит в концерн GM). Ее система состоит из четырех осветительных сегментов, за каждым из которых находится независимый источник света, а также фронтальной камерой, размещенной между ветровым стеклом и зеркалом заднего вида. Эта разработка также еще не выведена на массовый рынок.

Интересное решение в области автомобильного света весной 2013 г. показал Mercedes-Benz на примере компактного кроссовера GLA. Фары этого автомобиля оснащены лазерными проекторами, которые могут транслировать изображения и видео со смартфона или жесткого диска. Что касается самой Audi, то сейчас компания параллельно работает над прохождением светофоров без остановки и бесконтактной оплатой парковки «на лету».

В каком ЦОД разместить оборудование Colocation? Найти ответ на ИТ-маркетплейсе Market.CNews

  • Короткая ссылка
  • Распечатать

Преимущества матричного принтера

Хоть эта технология и является устаревшей, матричные принтеры и сегодня широко используются. Так как они имеют множество преимущество в определенной сфере эксплуатации.

Основные преимущества:

  1. Самое главное достоинство – низкая стоимость. Цена этого оборудования в десятки раз меньше, в отличие от струйных или лазерных принтеров.
  2. Время эксплуатации значительно выше, чем время работы других принтеров. Красящая лента не высыхает резко, это всегда можно увидеть заранее, так как качество распечатанного текста начинает чуть бледнеть. Другие виды устройств могут завершить работу в неподходящий момент, когда нет времени на зарядку картриджа.
  3. Любой тип бумаги. Распечатывать можно не только на специальной бумаге, которая предназначена для других моделей.
  4. Стойкость распечатанного текста к грязи и воде.
  5. Устройство обеспечивает печать под «копирку», это позволяет быстро размножить однотипный текст.

Невзирая на большое количество преимуществ, это оборудование имеет и недостатки, делающие устройство непригодным к эксплуатации в определенных случаях.

Недостатки:

  1. Это оборудование не сможет напечатать фото. Он не может качественно перенести изображение. Потому для этого матричное устройство абсолютно не подходит.
  2. Невысокая производительность. В отличие от современных аналогов матричный принтер производит значительно меньше распечатанных страниц. Естественно, если его использовать, копируя однотипные документы, то скорость иногда даже выше в отличие от аналогов. Также существует режим, с помощью которого можно повысить скорость печати. Но в данном случае теряется качество получаемого текста.
  3. Устройство довольно шумное. Поскольку основное количество деталей производит работу механически, оборудование имеет высокий уровень шума. Чтобы это исправить, будет необходимо отдельно купить специальный кожух или установить оборудование в другом помещении.

Матричная оргтехника является одной из самых старых в сегменте устройств. Инженеры не единожды пересматривали эту технологию, внося множество изменений, но механическая часть осталась на прежнем уровне. Но это же и обусловило преимущества, выделяющие матричные устройства. При этом цена этих принтеров покрывает множество недостатков.

Принцип работы матричных фар

Модуль дальнего света фар состоит из двадцати пяти светодиодов, которые объединены в группы по пять штук, образующих матрицу. Каждая группа обладает своим металлическим радиатором для охлаждения и своим отражателем. Благодаря матрице, из светодиодов реализуется порядка миллиарда разных комбинаций распределения света. Что касается модуля ближнего света фар, то он расположен над модулем дальнего света. Он тоже состоит из светодиодов, которые разделены на несколько групп. В самой нижней части фары расположен модуль указателя поворота, габаритных огней и дневных ходовых огней. Включает модуль тридцать последовательных светодиодов.

Дизайнерское обрамление подчеркивает расположение модулей освещения. Кроме этого в матричной фаре размещен электронный блок управления. В целях принудительного охлаждения светодиодов, фары вооружены воздуховодом с вентилятором.

Все конструктивные элементы таких фар находятся в пластмассовом корпусе, который является основой для размещения элементов и защитой от внешнего воздействия. Прозрачный рассеиватель закрывает корпус с лицевой части.

Матричные фары оснащены электронной системой управления, которая традиционно включает в себя блок управления, входные устройства и исполнительные элементы. Под входными устройствами подразумеваются GPS навигационная система, видеокамера и ряд датчиков. Навигационная система предоставляет водителю сведения о рельефе дороги (подъемы, спуски, повороты), а видеокамера дает информацию о прочих автомобилях, находящихся на дороге.

В «интересах» фар работает большое количество датчиков прочих систем автомобиля, таких как датчик угла поворота рулевого колеса, датчик дорожного просвета, датчик скорости движения, датчик дождя и датчик освещения. Информация, поступающая от входных устройств, обрабатывается электронным блоком управления, который в зависимости от ситуации на дороге активирует определенные светодиоды или дезактивирует их.

Поворотные механизмы в матричных фарах не используются подобно тому как они используются в ксеноновых фарах. Все рабочие функции матричных фар выполняются только с помощью статических светодиодов и электроники.

Электрокары и гибриды

Хотя работающие на водороде автомобили не являются ни электрокарами, ни гибридами, мы все же отнесем их именно к этой категории. По большому счету водородомобили близки к чистым электромобилям с той лишь разницей, что они могут сами вырабатывать электричество. Наиболее актуальной новинкой в этой сфере является седан Toyota Mirai, по основным потребительским качествам приближенный к рядовым машинам с ДВС. На полностью заправленном баллоне водорода он проезжает около 500 километров, а разгон с 0 до 100 км/ч у Mirai занимает девять секунд. В новой рекламе японская компания продемонстрировала еще один плюс Toyota Mirai: этот автомобиль способен ездить даже на продуктах жизнедеятельности коров.

https://youtube.com/watch?v=9pTluy9KpYU

По всей видимости, новый ролик является ответом «Тойоты» на нападки со стороны других производителей. К примеру, Элон Маск (Elon Musk) из Tesla Motors и Карлос Гон (Carlos Ghosn) из альянса Renault-Nissan весьма нелестно отзывались о проекте по созданию автомобиля, ездящего на водороде. Теперь японцы показали, что подходящее для легковушки топливо можно добывать даже из экскрементов крупного рогатого скота.

Продажи Toyota Mirai начнутся в США ближе к концу текущего года. Автомобиль будут сдавать в лизинг за 499 долларов в месяц либо продавать за 57 500 долларов без учета государственных субсидий, которые зависят от штата.

Пока японцы пытаются продвигать идею светлого водородного будущего, британцы не первый год приспосабливают технологии болидов «Формулы-1» к большим маршрутным автобусам. Казалось бы, что общего может быть у этих совершенно разных транспортных средств? Оказывается, таким элементом может стать маховик, который позволит накапливать кинетическую энергию, что снизит расход топлива и объем вредных выбросов. Год назад мы писали про британскую компанию GKN, которая приобрела Williams Hybrid Power Limited, подразделение Williams Grand Prix Engineering Limited (компании — владельца всемирно известной гоночной команды Williams). Основным интересом GKN стал так называемый «кинетический маховик», который предполагается использовать в автобусах. Теперь британцы поделились новыми достижениями своего амбициозного проекта.

Пока все идет намеченными ранее темпами. К концу 2016 года по Лондону будет ездить в общей сложности 500 автобусов, оснащенных углепластиковыми «кинетическими маховиками». Они будут раскручиваться во время торможения с помощью электромотора. При разгоне процесс будет запущен в обратном направлении. По расчетам инженеров, такой метод гораздо эффективнее обычного рекуперативного торможения, в котором используются аккумуляторные батареи.

По новым данным инженерной компании GKN, использование маховика позволит снизить вредные выбросы в окружающую среду на 50-75 процентов. Столь впечатляющие показатели стали доступны благодаря работе дизельного двигателя при постоянных оборотах — 1500 в минуту. Также использование инновационного маховика позволит снизить шум ускоряющегося автобуса.

Благодаря использованию углепластикового маховика в качестве источника энергии для электромотора можно будет сэкономить на двигателе внутреннего сгорания — он может стать компактнее и дешевле. По расчетам GKN, срок окупаемости инновационной системы составит всего два года. Также британцы рассказали о планах по дальнейшему совершенствованию своих автобусов. В перспективе в трансмиссию можно будет интегрировать небольшую батарею, которая вкупе с маховиком позволит проезжать несколько кварталов с полностью заглушенным двигателем внутреннего сгорания.

Разновидность функций освещения в матричной оптике

Чем сложней устроена конструкция оптики, тем больше функций она может выполнять. В матричной оптики насчитывают девять разновидностей функций освещения:

  • постоянный дальний свет;
  • освещение для автомагистралей;
  • ближнее освещение;
  • адаптивное освещение;
  • освещение на перекрестках;
  • освещение в любую погоду;
  • подсвечивание пешеходов;
  • адаптивное динамическое освещение;
  • динамический указатель поворотов.

Список не малый как видим, рассмотрим по каждому пункту отдельно, как устроен и принцип освещения.

Полисегментальный дальний свет позволит водителю двигаться с постоянным включенным дальним светом. В таком случае будут задействованы 25 отдельных светодиодов дальнего света. Так же будет задействована видеокамера, которая в темное время суток следит за встречными и попутными автомобилями по их свету фар. Как только обнаружен автомобиль, блок управления выключает часть светодиодов, которые направлены на движущийся автомобиль. Свободное пространство дороги будет освещаться в прежнем виде. Для уменьшения ослепления водителей яркость оставшегося блока матричной оптики будет уменьшена. По данным с паспорта, блок управления матричных фар одновременно может распознать до восьми автомобилей.

Свет для движения по автомагистрали основывается на полученную информацию с навигационной системы. Адаптивная система сужает конус дальнего света матричных фар, таким образом, чтоб максимально направить вперед и сделать удобной для других водителей.

Ближнее освещение имеет традиционную форму, средняя часть дороги освещается меньше, а вот боковая часть и обочина больше. При этом матричная оптика направляется вниз в зависимости от рельефа дороги и населенного пункта.

Адаптивный свет направлен на лучшее освещение машины спереди и сбоку во время выполнения маневра поворота. В таком случае система матричных фар в каждой из фар задействует по три светодиода, которые включаются или выключаются при повороте руля или срабатывании поворотов.

Освещение перекрестков предназначено для освещения перекрестков при приближении к ним. В этом случае для матричных фар так же задействована навигационная система, на основе информации которой и определяется перекресток.

Всепогодное освещение из самого названия говорит о том, что при движении в плохих погодных условиях (туман, дождь, снег) будет меняется качество освещения. Блок управления настроить светодиоды матричной оптики таким образом, чтоб избежать ослепления от своих же фар. Интенсивность светодиодов матричной фары будет меняться в зависимости от видимости.

Подсвечивание пешеходов в матричных фарах реализовано на высоком уровне. В случае обнаружения пешехода с помощью камеры и системы ночного виденья, на обочине или опасной близости от нее оптика будет троекратно сигнализировать дальним светом об этом. Тем самым предупреждать как водителя, так и пешехода.

Динамическое адаптивное освещение это предпоследний вариант в матричных фарах. Суть его работы направлена на освещение дороги во время поворота. Поворачивая рулевое колесо, яркость светового пучка перенаправляется с центральной части в сторону поворота. То есть одна часть светодиодов становится тусклее, другая ярче.

Динамический указатель поворотов матричных фар рассчитан на управляемое движение светодиодов в направлении поворота. Таким образом, 30 последовательных светодиодов оптики включаются последовательно с периодичностью в 150 мс. Со стороны это не только красиво выглядит, но и дает больше информации о том или этом маневре автомобиля.

Многие производители уже готовят свои автомобили под внедрение подобной технологии матричной оптики, но насколько это удастся, пока никто не может сказать. На данный момент компания Audi является единственным правообладателем подобной технологии в оптике и захочет ли она делиться с другими производителями остается под вопросом.

Видео о принципе работы матричной оптики и её строении:

Основные функции освещения матричной оптики

Как уже говорили, матричная оптика не просто освещает дорогу впереди автомобиля, а имеет встроенный интеллект, который способен самостоятельно просчитывать действия водителя на шаг вперед. За счет такого механизма реализовано множество функций освещения.

Все производители выделили девять основных типов освещения матричной оптики:

  • динамический указатель поворота;
  • подсвечивание пешеходов независимо от местности;
  • освещение перекрестков во время движения;
  • режим статического адаптивного освещения;
  • ближний свет матричной оптики;
  • адаптивное динамическое освещение;
  • освещение в любую погоду;
  • дальний свет (полисегментальный);
  • дальний свет на автоматигистрали.

Каждая из перечисленных функций считается стандартной и выполняет свое назначение. Динамический указатель поворотов, как и полагается, предназначен для указания выполнения маневра. Для работы система задействует 30 светодиодов, включая блок с периодичностью 150 мс. Такое оповещение о маневре автомобиля хорошо заметно и дает больше информации участникам движения.

Подсвечивание пешеходов независимо от местности позволяет водителю избежать столкновения, а пассажиру сигнализирует о приближении автомобиля. В матричной оптике данная функция реализована, как максимально важная и параллельно использует другие системы безопасности машины. Для этого используется система ночного виденья, радары и датчики движения. В случае обнаружения пешехода, матричная оптика трижды подаст сигнал дальним светом и подсветит пешехода, тем самым предупредив водителя и пешехода.

Освещение перекрестков во время движения – это не менее полезная функция. Как только автомобиль приближается к перекрестку, система автоматически поворачивает матричную оптику в сторону поворота руля или увеличивая угол освещения. В пару с матричной оптикой работает навигационная система, предупреждая о наличии перекрестков спереди.

Режим статического адаптивного освещения организовано на основе подсветки перекрестков. Система матричной оптики улучшает освещение пространства сбоку и спереди машины в момент выполнения поворота. Для этого задействуют по три светодиода, которые задействуются в момент включения поворота или поворота рулевого колеса.

Ближний свет матричной оптики автомобиля это традиционная асимметричная форма. Ближе к середине освещение меньше, а вот обочина дороги освещается больше, инженеры сделали такое для того, чтоб можно было вовремя среагировать на помеху сбоку.

Адаптивное динамическое освещение матричной оптики чаще всего используется на скорости, в таком случае, пучок дальнего света переносится с центральной части оптики в сторону поворота. Такой эффект достигается за счет изменения яркости светодиодов оптики, одни становятся тусклее, а другие более яркими.

Плохие погодные условия – еще один нюанс, когда водителю плохо видно дорого. Освещение в любую погоду это достижение инженеров матричной оптики, система рассчитывает мощностью светодиодов так, чтоб можно было избежать ослепления своими же фарами. В таком случае, снижается интенсивность основных светодиодов и включается подсветка статического адаптивного освещения.

Полисегментальное освещение самое главное в матричной оптике. Для данной функции используется несколько вспомогательных систем автомобиля, включая переднюю видеокамеру. Основную функцию выполняет блок электронного управления. Определив встречный автомобиль, электроника тушит определенные светодиоды, направленные на встречную машину, а вот остальные продолжают работать в прежнем режиме. Если определен впереди идущий автомобиль, то система автоматически рассчитывает насколько нужно приглушить яркость светодиодов. По данным производителя, система одновременно может маскировать до восьми машин, тем самым освещая дорогу, не ослепив других водителей.

Свет матричной оптики для автомагистрали базируется на основе информации полученной от навигационной системы. В случае движения по автомагистрали, электроника матричной оптики сужает пучок света и конус света фар, чтоб максимально осветить дорогу впереди, но при этом так же используется система полисегментного освещения. На первый взгляд матричная оптика красивая по дизайну, но копнув глубже, видим, что за счет инженерных систем она очень помогает водителю в самых непредсказуемых ситуациях.

Как устроена матричная фара

С наведенной информации видно, что в основе матричной фары лежат светодиоды и никаких других осветительных приборов. Действительно, такое строение выдаст намного больше света, чем ранее известные виды оптики. Для лучшего вида элементы матричной оптики подчеркнули дизайнерским обрамлением в современном стиле. Все части оптики, включая блок управления и принудительную вентиляцию, помещены в пластмассовый корпус, который так же является основой и защищает от воздействия внешних факторов. Лицевую часть матричной фары закрывает прозрачный рассеиватель.

Становится понятно, что при наличии блока управления, вся система контроля и управления будет электронной, по традиции включая входные устройства и исполнительные элементы. В качестве входных устройств считаются различные датчики и видеокамера.

Видеокамера дает информацию о наличии других автомобилей на дороге. Таким образом, блок управления будет переключать дальний и ближний свет автоматически, регулировать угол и яркость оптики. Если же говорить о датчиках матричной оптики, то зачастую они используются от других систем, таких как угол поворота руля, датчик скорости автомобиля, датчик просвета дорожного, датчик освещения и датчик дождя. Именно эти датчики отвечают за комфортную езду и своевременное срабатывание различных систем.

Если же в автомобиле есть навигационная система, то в блок управления матричных фар будет использовать данные с маршрута, характер вождения автомобиля, рельеф дороги и местности, а так же учитывать проезд по населенным пунктам.

Главную роль в матричных фарах несет блок управления. Он обрабатывает информацию, полученную от входных устройств, и зависимо от полученных данных включает или выключает определенный ряд светодиодов. Новшеством стоит отметить то, что в матричной оптики не используются поворотные механизмы, как это было у ксеноновых фарах. Все функции выполняют благодаря статическим светодиодам и электронике матричных фар.

Что такое светодиодные фары, и как они работают?

Большинство людей знают, что светодиоды – это источники света, основанные на светоизлучающих диодах, которые имеют ряд преимуществ как перед галогенными, так и перед ксеноновыми лампами. В том числе и в автомобильной промышленности. Но мало кто задумывается, что светодиоды по сравнению с галогенными лампами более дороги и сложны в процессе производства. Тем не менее светодиоды захватывают автопромышленность.

Почему? Все дело не только в их ярком освещении, но и в их невероятной энергоэффективности за счет того, что каждый используемый диод в фаре потребляет гораздо меньше энергии по сравнению с галогенными или ксеноновыми источниками света. 

Большинство новых автомобилей сегодня оснащены светодиодными дневными ходовыми огнями. Что касаемо полноценных светодиодных фар, пока что в мире LED-фары не стали глобальным стандартом. Тем не менее с каждым годом все больше автомобилей получают в базовой комплектации полноценные светодиодные фары. В будущем, скорее всего, все автомобили (даже дешевые) будут поставляться только со светодиодами. 

Производители, оснащая машины LED-лампами, преследуют одну цель – снижение расхода топлива и снижение вредных выбросов. При использовании светодиодных источников света в автомобиле падает нагрузка на электрическую цепь. Вот почему светодиоды становятся популярны во всем мире. 

Также светодиоды производят кристально чистый свет. Новое же поколение матричных фар позволило достичь огромных успехов в адаптации автомобильного освещения в зависимости от дорожных условий. Это огромный шаг вперед по сравнению с галогенными, ксеноновыми и обычными светодиодными фарами. Единственный минус матричных фар – это невероятно дорогостоящая замена оптики в случае ее повреждения или поломки. 

Как работают светодиодные фары?

Светодиод – это просто полупроводник, который излучает свет, когда через него проходит ток. Для того чтобы полупроводник начал светиться, необходимо ничтожно малое количество электричества. Из-за того что светодиоду нужно мало энергии, аккумулятор для поддержания освещения расходует гораздо меньше энергии по сравнению с галогенными или ксеноновыми лампами. Следовательно, чем меньше расходуется энергии, тем меньше идет нагрузки на двигатель для зарядки аккумулятора, что в конечном итоге влияет на экономичность автомобиля. 

Ток в светодиодных фарах течет от катода к аноду, проходя через полупроводниковый материал, который по проводимости представляет собой что-то среднее между металлом и каучуком. В итоге полупроводник при прохождении электричества начинает испускать фотоны, которые и освещают дорогу впереди автомобиля. 

Из-за простоты конструкции светодиода срок его службы может длиться более десяти лет. Тем не менее светодиодные фары – пока что новая технология. И как она себя зарекомендует, покажет время. К сожалению, пока нет 10-летних автомобилей со светодиодной оптикой, по которым можно было бы сделать вывод о реальном сроке службы светодиодных фар. Ведь в отличие от домашних светодиодных ламп LED-фары в автомобиле подвергаются постоянной тряске, вибрации, перепадам температур и т. п. И кто его знает, как долго будут служить светодиоды в автомобиле. Вполне возможно, что их надежность окажется под сомнением.

Что такое адаптивные светодиодные фары?

Стоит отметить, что не все адаптивные фары являются адаптивными светодиодными блоками. Адаптивный светодиодный блок – это фара, которая может менять направление и/или яркость в соответствии с дорожными условиями за счет изменения порядка свечения светодиодов в блоке и за счет изменения их яркости свечения. 

Что такое светодиодные матричные лампы (Matrix), и как они работают?

В математике матрица определяется как прямоугольный массив чисел, организованный в строках и столбцах, которые рассматриваются как единый объект. Поменяйте «цифры» на «светодиоды и датчики» в этом определении и вы получите матричную концепцию автомобильного освещения.

Светодиодные матричные фары работают в паре с датчиками и камерами, которыми оснащен автомобиль.

Все эти датчики и камеры контролируют дорогу впереди, чтобы определять интенсивность движения и изменяемые дорожные условия (например, резкие повороты).

Все эти данные используются для интеллектуального освещения дороги за счет контроля освещения каждого светодиода в матрице. Но конечная цель матричной фары – сохранить как можно больше света без вреда встречному движению. 

Плюсы

  • Энергетически эффективные источники света
  • Могут быть относительно недорогими 
  • Долгосрочный прогнозируемый срок службы

Характеристики и какими бывают

Светодиодные матрицы обладают улучшенными качествами, нежели лампы накаливания или любые другие осветительные приборы. Постепенно вытесняют из рынка люминесцентные и лампы накаливания, благодаря своим основным качествам: надежность, световой поток, малое потребление электроэнергии. Изготавливаются светодиодные матрицы на специальной теплопроводной подложке, обладающей изоляционными качествами. В некоторых моделях актуальны драйвера, влияющие на стабилизацию подачи напряжения и нагрев осветительного прибора. Единая схема, выполненная из множества простых светодиодов, соединена параллельным или последовательным методом. Таким образом, потребление входного напряжения меньше, а световая эффективность выше. Мощные светодиодные матрицы представляют собой сборки из нескольких кристаллов в одном блоке. Специальная пластиковая основа позволяет произвести монтаж оптики для эффективного рассеивания света. Стандартными и самыми распространенными считаются мощные светодиодные матрицы на 10 Вт:

— Оптимальное напряжение (11-12В); — Стабилизация тока (0,9-1А); — Высокий уровень светоотдачи

При установке особенно важно спроектировать охлаждение, способное предупредить случайные поломки и преждевременную потерю яркости. LED-светильник по истечению срока годности начинает терять свою яркость и постепенно угасает

Почему матричные фары так хороши?

Еще вчера считалось, что нет ничего круче ксенона, потом все заговорили о светодиодных фарах, а затем резко переключились на матричные… И пока всех не ослепило лазерными фарами, имеет смысл кое в чем разобраться вместе с нашими коллегами из «АвтоВести».

Матричные фары – один из вариантов конструкции светодиодных фар (не зря компания Audi, внедрившая это решение одной из первых, называет его Matrix LED)

Источники света все те же, а важное различие – в том, как организована работа этих источников

Матричные фары в последнее время начали появляться даже на сравнительно доступных моделях — одной из таких недавно стало семейство Audi A4.

В описаниях матричной оптики акцент нередко делают на количестве светодиодов – к примеру, в каждой из мерседесовских фар Multibeam работает 24 диода, а в усовершенствованном варианте, который представят публике вместе с новым поколением Е-класса, их будет уже 28. Однако и в «обычных» светодиодных фарах количество источников света запросто может составлять несколько десятков. К примеру, на сравнительно доступном Audi A3 за ближний свет отвечают девять «светодиодных чипов», а за дальний свет – десять светодиодов

При разговоре о матричных фарах обратить внимание надо не столько на количество, сколько на качество

«Простая» светодиодная оптика воспроизводит структуру, известную нам еще по дедушкиным «Жигулям»: как и раньше, есть отдельные блоки габаритных огней, дальнего и ближнего света – просто устаревшие лампочки уступили место диодам. При переходе речь идет уже не о простом выборе между ближним и дальним, а о создании динамической световой картины, которая постоянно подстраивается под дорожную обстановку. В фаре Matrix LED привычное разделение по типу света существует – но включать, приглушать или выключать можно не только отдельный блок диодов (которых в каждой паре пять), но и каждый отдельный светодиод. В итоге электроника располагает множеством вариантов ближнего и дальнего. Свой световой сценарий найдется практически на все случаи жизни – ведь количество доступных комбинаций приближается к одному миллиарду!

Нетрудно догадаться, что для реализации всех возможностей матричных фар нужны, во-первых, сложная управляющая электроника, а во-вторых, система устройств, считывающих информацию о дорожной обстановке – датчики, видеокамеры и даже навигационная система, которая предупредит о приближении к повороту и расскажет о его конфигурации. А значит, эта новомодная оптика – штука дорогая. И если в прайс-листе в соответствующей графе стоит сравнительно гуманная сумма, то при необходимости за свой счет менять разбитую в аварии фару быстро может прийти в голову в мысль, что не так, может быть, и плохи допотопные галогенки…

Как устроена матричная оптика: разбираемся на примере разработок компании HELLA

Постепенный переход на светодиодные источники света в автомобилях уже несомненная тенденция. Лампы накаливания в ближайшем будущем останутся уделом устаревших конструкций. А сейчас высокоэффективные и долговечные фары постепенно отвоевывают позиции у традиционных. В маломощных осветительных приборах светодиоды уже вытеснили конкурентов, а вот в области головного света сражение еще идет. И основное оружие светодиодов — матричная оптика конструкции Hella.

Просто заменить газоразрядный или галогенный источник света на светодиоды — идея не новая. Еще в 2008 году подобная система появилась на машинах Lexus LS, а сейчас построенная по тому же принципу головная оптика стала базовой на многих массовых автомобилях. Например, новый кроссовер Skoda Kodiaq оснащен ею в базовой комплектации, как и соплатформенный VW Tiguan. На базе подобной конструкции можно создать даже адаптивное освещение, и оно не будет ничем принципиально отличаться от использующего газоразрядные источники света. Но настоящий прорыв в эффективности дает только матричная светодиодная оптика.

Качественный головной свет автомобиля должен быть не только ярким, но и освещать исключительно необходимые зоны. Кроме того, не слепить встречных водителей, выделять важные объекты и при этом учитывать особенности человеческого глаза в отношении контрастности освещения и светотеневой границы.

Адаптивное головное освещение на базе единого источника света во многом решает эти сложности, но настоящий прорыв возможен только при использовании матричного освещения, когда за каждую зону отвечает отдельный источник света с регулируемой яркостью, а управляется система интеллектуальным модулем, способным распознавать объекты перед машиной и регулировать освещенность различных зон по ситуации. И именно по этому пути пошла компания Hella при разработке своих матричных светодиодных модулей адаптивного освещения.

Идея использовать много фар для освещения нескольких зон перед машиной в случае традиционных источников света сталкивается с габаритными ограничениями. И газоразрядные источники света, и лампы накаливания имеют достаточно крупные размеры рабочей области и требуют объемной оптической системы.

В случае со светодиодным освещением такая проблема не стоит. Если отказаться от использования сменных светодиодных модулей, то на небольшой плате можно разместить более 50 светодиодов, а поскольку их световой поток имеет явную направленность, то подобная матрица диодов отлично работает с компактной и простой оптической системой.

На практике в оптике Audi Matrix LED с 25 светодиодами адаптивного освещения они собраны в сменные модули по пять светодиодов в каждом, и еще пять модулей используются для статического освещения — ближнего света и статического бокового. В следующем поколении оптических систем Hella, которые с 2016 года устанавливаются на машины Mercedes, применяется целых 84 светодиода на единой плате.

Перспективная LED-оптика разработки Hella по-прежнему имеет «всего» 25 светодиодов на единой плате, но за счет использования в оптической системе фары проекционного LCD-дисплея с разрешением 30 тыс. пикселей с матрицей 100х300 число контролируемых зон освещения возрастает на порядок.

Сложность подобной конструкции легко недооценить. При тех же габаритах, что и у традиционной фары, внутри матричная LED-оптика и ее система управления устроены на порядок сложнее. Чтобы не быть голословным, рассмотрим конструкцию и ее возможности на примере оптики Audi Matrix LED для модели A8 в кузове D4 2013 года. Не самой новой, но зато одной из самых распространенных в России и имеющей много общего со светодиодной матричной оптикой других машин Audi. На следующих поколениях и для других моделей, скорее всего, будет уже лазерный источник света.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: